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Abstract: We present a new solution to tracking and mapping with an event camera. The motion of
the camera contains both rotation and translation displacements in the plane, and the displacements
happen in an arbitrarily structured environment. As a result, the image matching may no longer be
represented by a low-dimensional homographic warping, thus complicating an application of the
commonly used Image of Warped Events (IWE). We introduce a new solution to this problem by
performing contrast maximization in 3D. The 3D location of the rays cast for each event is smoothly
varied as a function of a continuous-time motion parametrization, and the optimal parameters are
found by maximizing the contrast in a volumetric ray density field. Our method thus performs joint
optimization over motion and structure. The practical validity of our approach is supported by an
application to AGV motion estimation and 3D reconstruction with a single vehicle-mounted event
camera. The method approaches the performance obtained with regular cameras and eventually
outperforms in challenging visual conditions.

Keywords: computer vision; event-based vision; SLAM; visual localization and mapping

1. Introduction

Vision-based localization and mapping is an important technology with many applica-
tions in robotics, intelligent transportation, and intelligence augmentation. Although several
decades of active research have led to a certain level of maturity, we keep facing challenges
in scenarios with high dynamics, low texture distinctiveness, or challenging illumination
conditions [1,2]. Event cameras—also called dynamic vision sensors—present an interesting
alternative in this regard, as they pair High Dynamic Range (HDR) with high temporal resolu-
tion. The advantages and challenges of event-based vision are well explained by the original
work of Brandli et al. [3] as well as the recent survey by Gallego et al. [4].

Previous works have employed time-continuous parametrizations of image warping
functions. Based on the assumption that events are pre-dominantly triggered by high-
gradients edges in the image, the optimal image warping parameters will cause the events
to warp onto a sharp edge map in a reference view called the Image of Warped Events
(IWE). The optimal warping parameters are hence found by maximizing contrast in the
IWE. Various reward functions to evaluate contrast have been presented and analyzed in
the recent works of Gallego et al. [5,6] and Stoffregen and Kleeman [7], and successfully
used for solving a variety of problems with event cameras such as optical flow [8-13],
segmentation [14-16], 3D reconstruction [17-19], and motion estimation [20-27]. The
main problem with the construction of the IWE is that it relies on a low-dimensional
image-to-image warping function, which—in the case of both translational and rotational
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displacements—is only possible if the model is homographic or if knowledge about the

depth of the scene is prior available.

Past solutions to event-based localization and mapping, therefore, looked at alterna-
tive solution attempts. Note that there are lots of works on the localization and mapping
problems individually, a listing of which would go beyond the scope of this introduction.
Here we only focus on combined solutions to both problems that use only a single event
camera and that can handle combined rotational and translational displacements in un-
known, arbitrarily structured environments. There are surprisingly few works that solve
this problem, which is proof of its difficulty. The first solution to this problem is given by
Kim et al. [28], who propose a complex framework of three individual filters. Results are
limited to small-scale environments and small, dedicated motions. A geometric attempt is
given by Rebecq et al. [29], who present a combination of a tracker and their ray-density-
based structure extraction method EMVS [17]. However, the framework alternates between
the tracking and mapping solutions, which leaves open questions as to how to bootstrap
the system safely. Zhu et al. [30] finally present a promising learning-based approach.
However, it depends on vast amounts of training data and provides no guarantees of
optimality or generality.

Our work makes the following contributions:

*  We perform contrast maximization in 3D. Using a time-continuous trajectory model,
the 3D location of the landmarks corresponding to events is modelled by time-
continuous ray warping in space, and the optimal motion parameters are found
by maximizing contrast within a volumetric ray density field, denoted by Volume of
Warped Events (VWE).

*  Our method is the first to perform joint optimization over motion and structure for
event cameras exerting both translational and rotational planar displacements in an
arbitrarily structured environment.

*  We successfully apply our framework to Autonomous Ground Vehicle (AGV) motion
estimation with a forward-facing event camera. We prove that by using only an event
camera, we can provide good quality, continuous visual localization, and mapping
results able to compete with regular camera alternatives, especially as visual conditions
degrade.

2. Contrast Maximization

We are given a set of N events £ = {ek}}(\lzl happening over a certain time interval,
where each event e, = {xy, 1, bi } is defined by its image location x; = [x;  yx]7, timestamp
t, and polarity by. Note that the set is ordered, meaning thatif £ = {...,¢;, ... /€, - - Y
then t; < t;. We furthermore assume that image warping during the entire time interval
can be parametrized as a continuous-time function of a certain parameter vector 6, and
define the warping function x'y = W(xy, t¢|6) that warps an event with location x; and
timestamp t; into a reference view at ¢,.

Gallego et al. recently proposed a unifying framework for solving motion estimation
problems with event cameras [5]. If the motion is estimated correctly, events that are triggered
by the same point will be accumulated by the same pixel in the reference view, and the
resulting Image of Warped Events (IWE) will, therefore, become a sharp edge map. The
question is how the accumulation is done and how the sharpness of the IWE is characterized.

Gallego et al. propose to optimize the alignment of the events by maximizing the
=g 1>

contrast in the IWE. Formally, the IWE at point x is defined by I(x|") = YN ;e~ = ,
and it is evaluated discretely for each pixel center location. While the application of a
Gaussian kernel makes sure that events that are closer to a certain pixel contribute more
than events that are further away, it also makes sure that the IWE and its contrast remain
smooth functions of the motion parameters and thus optimizable through gradient-based
methods. According to [6,7], the contrast or sharpness of the IWE may finally be evaluated
using one of several possible focus loss functions. Here we use the perhaps most common
one, given by the IWE variance fy,,(I) = Nip ¥ (1(x;]0) — #1)?. pg is the mean value of




Sensors 2022, 22, 5687

3of 14

I, Ny the number of pixels in I, and i and j are indices that loop through all the rows and
columns of the IWE. As shown in the heat maps of [6], the highest variance of the IWE
gives the highest contrast location, and thus the optimal motion parameters cause the best
alignment of the warped events.

The framework allows us to tackle several important motion estimation problems
for event-based vision, such as optical flow estimation, motion segmentation, or pure
rotational motion estimation. However, note that for an arbitrary point to be warped into
the reference view, the warping must either be homographic or the parameter vector 6 must
contain the depth for each event at the time it was captured. Both are rather restrictive
towards general camera motion estimation in arbitrary environments. Current state-of-art
contrast maximization methods can, therefore, only handle a particular set of problems
such as motion in front of a plane or pure rotation.

3. Volumetric Contrast Maximization Using Ray Warping

Let us now proceed to our main contribution, which consists of extending the idea of
contrast maximization into 3D, a technique that will enable us to handle situations in which
we perceive non-planar environments under arbitrary motion and with no priors on the
depth of events. Our main idea is illustrated in Figure 1. We introduce a continuous-time
camera trajectory model as done in Furgale et al. [31], which parametrizes both the position
and the orientation of the sensor as a smooth, continuous function of time. For a given event,
we may then use its timestamp to extrapolate the position and orientation of the event
camera at the time the event was captured. Combined with the normalized spatial direction
of the event inside the camera frame, each event can be translated into a spatial ray for
which the starting point and orientation depend on the continuous trajectory parameters.
Rather than evaluating the density of points for pixels in the image, we then propose
to evaluate the density of rays at discrete locations in a volume in front of a reference
view. We denote this volumetric density field the Volume of Warped Events (VWE). The
intuition is analogous to the IWE: the assumption is that there is a limited number of spatial
(appearance or geometric) edges that will cause sufficiently large gradients in the image.
Under the optimal motion parameters, the rays of the events will therefore intersect along
those spatial edges and cause maximum ray density in those regions. In other words, the
optimal motion parameters may be found by maximizing the contrast in the VWE. The
important question is again given by how to express the ray density in the VWE.

dmin -t

Cfr' ®

°

Figure 1. Volume of Warped Events: Events are transformed into rays that are warped in space based
on a continuous time trajectory model. We evaluate the ray density in a volume in front of a reference
view and maximize its contrast as a function of the continuous motion parameters.
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The structure of the VWE field is inspired by the space-sweeping approach of [17] et al.,
who propose to estimate 3D structure regardless of explicit data associations and photometric
information by finding local maxima in a spatial ray density field. However, their method
assumes known camera poses, using an alternative camera tracking scheme in their previous
work [29]. To the best of our knowledge, we are the first to propose the maximization of the
contrast in the volumetric ray density field and thus implicitly perform joint optimization
over the continuous camera trajectory parameters and the 3D structure.

3.1. Continuous Ray Warping

Suppose our event camera is pre-calibrated and camera-to-image as well as image-to-
camera transformation functions 7t(-) and 7r~!(-) are given. The latter transforms image
locations into spatial directions in the camera frame by f; = 777 !(x;). In terms of the
extrinsic, the trajectory of the camera is kept general for now and simply represented by
K(t0) ] , where 0 still
q(t|6)
represents a set of continuous motion parameters, t the position of the camera expressed in
a world frame, and q its orientation as a Rodriguez vector. Note that the dimensionality
of 0 is left unspecified for now. However, as will be shown in Section 4, it may indeed
have only one or two parameters for certain special types of planar displacements. Besides
its inherently smooth property, the continuous-time trajectory model has the obvious
ability to be able to register information coming from temporally dense sampling sensors,
such as event cameras. The transformation from camera to world at time ¢ is given by
T(t)0) = |R(al6)) t(tlﬂ)]

o7 1
at time t; where a certain event ¢, has been captured. The absolute pose of the frame at the
time of capturing ey is given by T,,x = T(#|0). Now let ¢, be the reference frame in which
we define the projective sampling volume for the VWE. The absolute pose of ¢, is given by
Tyr = T(t:]0). The relative transformation is finally given as

a minimal, time-continuous, smoothly varying 6-vector s(f|0) = [

. With reference to Figure 1, ¢, represents the camera frame

Ry (]|0) t-(t|O _
Trk:[ V(O’T“ ) ’(f' U ¥

Finally, let A represent the unknown depth along the ray. Any point on the ray seen
from the reference view can be parametrized by pyx(A) = AR, (t]0)f; + t-(t]0).

3.2. VWE and Spatial Contrast Maximization

We are now going back to our question of how to express the ray density in the VWE.

The VWE is defined in a volumetric, projective sampling grid, as illustrated in Figure 2. Let

v be the center of a voxel. The density of the rays in a voxel is now expressed as a function

of the orthogonal distance between the voxel center v (expressed in the reference view) and

each individual ray. This spatial point-to-line distance is also called the object space distance,
and it is given by

€1 (v]6) = [|(T = Vi) (RY (£]0) (v — t-(£16))) I, 2

where we have used the rotation R] (#;|6) and translation —R] (#|0)t,(t|0) to transform

the voxel centre v into the camera viewpoint at time t;, and (I — Vi) = (I — %) is the
householder matrix to project this point onto the normal plane of the observatiorf direction
fr.. An example of object space distances for one voxel is indicated in Figure 2.

Supposing that we have N events, the final VWE is again given in smooth form by
applying a Gaussian kernel and summing up the object space distances of every event with
respect to the voxel center v

N € (v]0)?
Vi(v|g) =) e
k=1

®)
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The standard deviation ¢ of the Gaussian kernels is not constant but chosen as a
function of the depth of the corresponding voxel from the center of the reference view.

The final optimization objective is given by maximizing the variance of the VWE,
which expresses the sharpness of the edges reflected in the volumetric density field

Fir(V) = < V7)) @)

uyr is the mean value of V', N, the number of voxels in the entire volume, and m, n, and |
now iterate through the voxels in the volume. Figure 3 visualizes an example VWE for wrong
and correct motion parameters. For correct motion parameters (cf. Figure 3a,b), which is
the exact rotation and translation displacement obtained from groundtruth, the density field
presents higher values and more contrast than for wrong motion parameters (cf. Figure 3c,d),
which we add a large perturbation on both rotation and translation displacement.

€1 (Vnml |9)
“; Vimnl
p— €2 (Vm,nl |0)

Figure 3. Volumetric ray density fields for correct (a,b) and wrong (c,d) motion parameters.
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3.3. Global Optimization Over Longer Trajectories

We perform global optimization by simultaneously maximizing the contrast in multi-
ple VWESs cast from neighboring reference views. Let {f,,...,t,,, } be the time instants at
which individual VWEs are placed. For simplicity, the time instants are regularly spaced
such that t,, | —t,, = 71. We furthermore define time intervals [, — % S %] for each
corresponding field V'i, which define the subset of events that will be used for registration
in that reference view. More specifically, event ¢ is used in Vi if ty € [t,, — Z : t;, + %}
The overall global optimization objective becomes

M
1 .
max ) = ) (Vi (Vi |0) = i),
i=1

Y mmn,l
_ e/ (v]o)?
where Vi(v|8) = ) e @ , (5)
ty +%12
€€ ! 1
t’177T2
bit3T . . :
and £ 12:2 is defined as the subset of all the events ¢, for which t; € [t,, — 3 : t,, + Z].
rp—2%82

The gl(;bal optimization strategy is depicted in Figure 4. Note that 7 may be chosen such
that neighboring volumes are overlapping, and 7, may be chosen such that events are
considered in more than just a single volumetric density field (i.e., 7> > 71). These choices
guarantee that the implicit graph behind this optimization problem is well connected and
effects such as scale propagation take place.

[
~o

S(t/6)

Figure 4. Global optimization over multiple reference volumes. The volumes may have spatial
overlap. There is an individual time span [¢,, — %Tz Dty %Tz] associated with each reference volume
Vi from which events will be considered (marked by the red, blue and green arrows). The time spans
may have temporal overlap. Two events may hence both appear in two distinct density fields, which
reinforces scale propagation in the optimization.

4. Application to AGV with a Forward-Facing Event Camera

We evaluate our method on a planar Autonomous Ground Vehicle (AGV) on which
we mount a single forward-facing event camera. Many solutions for regular, monocular
cameras exist, such as simple relative pose solvers [32] or full visual SLAM frameworks [33].
The application of an event camera promises strong advantages in situations of high motion
dynamics or—as shown in this work—challenging illumination conditions. Our motion
estimation framework is divided into two sub-parts, a front-end module that initializes
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motion over shorter segments and a back-end module that refines the estimate over larger-
scale sequences. Both will be introduced after a short overview of the framework.

4.1. Framework Overview

The complete Visual Odometry (VO) system is designed based on the above VWE
method. There are two main modules in the pipeline. The front-end initialization module
groups the events into sufficiently small subsets such that the motion on these subsets can be
locally approximated using a simplified first-order constant velocity model. Furthermore,
the front-end performs contrast maximization using a single VWE only. After a sufficient
number of events and initial relative displacements have been accumulated, our method
then proceeds to the back-end optimization part. The latter initializes a larger-scale, smooth,
continuous-time trajectory model and executes the multi-volume optimization outlined in (5).

4.2. Front-End Single-Frame Optimization

For the local approximation of the motion, we use a parametrization that is inspired
by [34,35]. Based on the assumptions of a driftless, non-holonomic platform and locally
constant velocities, the continuous motion of the planar vehicle may be approximated
to lie on an arc of a circle to which the heading of the vehicle remains tangential. This
motion model is also known as the Ackermann motion model, and the center of the circle
is commonly referred to as the Instantaneous Centre of Rotation (ICR). The model has only
two degrees of freedom, which largely simplifies the geometry of the problem. It is given
by the forward velocity v and the rotational velocity w.

Using the convention and equations from [35], the relative transformation from a
frame at time t; to a nearby reference frame at time ¢, is given by

cosw(ty —t) —sinw(f—t) 0
RY(#]60) = |sinw(t —t,) cosw(ty—t) O
0 0 1

1 —cos(w(ty —tr)) ©

(o) = = | sin(w(t—t)
0

Given that scale is unobservable, we fix the forward velocity v to the configured speed of
the vehicle (correct scale propagation is taken into account in the later global optimization
scheme). As a result, the local motion initialization scheme over a single volume has only 1-
DoF, and the parameter vector becomes 8 = w. Note furthermore that the original Ackermann
model requires the camera to be mounted in the center of the non-steering axis, which—in
practice—hardly ever is the case. We, therefore, add the extrinsic calibration parameters Ry,
and t,¢, which transform points back-and-forth between the camera and the vehicle reference
frames. The reader is invited to read up [35] to see more foundations of the Ackermann motion
model. Note that the variance of the VWE is a function of our unique degree of freedom w,
and the motion parameters can thus be efficiently solved by local gradient-based optimization
methods once a rough initial guess is given.

4.3. Back-End Multi-Frame Optimization

The front-end obviously estimates the motion over short time periods only and further-
more relies on the approximation of locally constant velocities and a circular arc trajectory.
We add a global back-end optimization over the entire trajectory, which relies on a more
general model representing smooth planar motion. We use a two-dimensional, p-th degree
B-spline curve

n
ax1(t) =) Niy(Hhpi, a<t<b, )
i=0

where the {p;} stand for the n + 1 two-dimensional control points that control the shape of
the smooth, planar trajectory, and the {N; ,(t)} are the known pth-degree B-spline basis
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functions. The reader is invited to read up [31,36] to see the foundations of B-splines and
example applications. Here we only focus on establishing the link to our smooth camera
pose functions used in the optimization objective (5).

The parameter vector 8 may be defined as the stacked control points of the spline
expressed by 0 = [p{ ... pL]T. The spline directly models the position in the plane, so we
easily obtain t¥(¢|0) = [C (Ot)} . For planar motion, the orientation is given by a pure rotation
about the vertical axis, and we furthermore exploit the fact that for driftless non-holonomic
vehicles, the heading of the vehicle remains tangential to the trajectory. If the heading of the
vehicle is still defined as the y axis, and the z axis points vertically upwards, the orientation
of the vehicle is finally given as

0 1., .
RY(t|6) = {—1 o]c(t) €t) 0y, ®)
0 0 1

Note that only the temporal basis functions depend on time and that ¢(t) therefore
also is a spline-based function of the same control points. The control point vector is
initialized from the approximate trajectory given by the front end using the spline curve
approximation given by the automatic knots spacing algorithms (9.68) and (9.69) of [36].

5. Implementation and Validation

In this section, we briefly introduce implementation details of our method and then
test our algorithm on multiple both synthetic and real datasets. We assess both the accuracy
and quality of the estimated trajectories, as well as the quality of the implicitly modeled 3D
structure.

5.1. Implementation Details

We utilize the event back-projection approach proposed in [17] to find the neigh-
boring voxels of a spatial ray efficiently. The details of this algorithm can be found in
Section 7.1 of [17]. We furthermore use a simple gradient-ascent scheme to solve our vol-
umetric contrast maximization problems. Especially in (6), the fixation of the forward
velocity v leaves the angular velocity w as the only unknown parameter, thus making the
front-end constraint a univariate problem. Finally, to recover the implicitly modeled 3D
structure of the environment, we simply reuse the Event-based Multi-View Stereo (EMVS)
method from [17].

5.2. Experiment Setup

To demonstrate the performance of our algorithm, we apply it to both synthetic and
real datasets. In the synthetic case, we use large-scale outdoor sequences from the KITTI
benchmark [37] and convert the image sequences into event data by using the method
of Gehrig et al. [38]. The datasets are fully calibrated and contain images captured by a
forward-looking camera mounted on a vehicle driving through a city. Experiments on real
data are conducted by collecting several small-scale indoor sequences with a DAVIS346
event camera. The camera is mounted forward-facing on a turtlebot (cf. illustrated in
Figure 5). It has a resolution of 346 x260, and captures RGB images in parallel to the events.

We compare our approach against traditional camera alternatives. Our current im-
plementation focuses on non-holonomic planar motion, which is why we use the 1-point
RANSAC algorithm for Ackermann motion [34] as a solid baseline algorithm for the regular
camera alternative. We also let our method compete against an established alternative
from the open-source community: ORB-SLAM [33]. Note that we rescale all monocular,
scale-invariant results to align as well as possible with groundtruth, which we obtain from
the original KITTI datasets or an Opti-track system.

It should be noted that a direct comparison against alternative event-based VO/SLAM
projects is difficult for several reasons. To date, there are no open-source implementations
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and we are the first to even evaluate a monocular, event-based pipeline on a popular,
established benchmark sequence. Furthermore, as stated in Section III. D of [29] and
Section 3.5 of [28], the few existing alternatives either depend strongly on the quality of
an initial 3D map (cf. [29]) or suffer from slowly converging depth estimates (cf. [28]). As
shown in their experiments, they, therefore, require hovering motion in front of the same
scene to provide sufficient time for the mapping back-end to converge. In contrast, our
method performs joint optimization of trajectory and structure in near real-time, and thus
successfully handles the continuous forward-exploration scenario.

S —

Figure 5. AGV equipped with a forward-facing event camera for vehicle motion estimation.

5.3. Experiment on Synthetic Data

To prove the effectiveness of our method—which denote ETAM—, we apply it to
synthetic sequences generated from the KITTI benchmark datasets [37]. These datasets rep-
resent a fairly normal use case without high motion dynamics or challenging illumination.
We use the publicly available tool proposed [38] to convert the regular videos into event
streams. We compare our method against two alternatives, which are the state-of-the-art
ORB-SLAM algorithm [33] and the classical 1-point Ransac algorithm—denoted 1pt—for
planar motion [34]. The evaluation is performed on sequences VO-00 and VO-07.

The qualitative performance is illustrated in Figure 6a. All algorithms successfully
process the sequences without any gross errors, and our system is slightly less accurate
than ORB-SLAM on these high-quality datasets. We furthermore believe that the decrease
in performance is mostly explained by the approximate motion model, which ignores the
slight pitch angle variations that could result from unevenness of the ground surface. Fur-
thermore, we perform on par with 1pt, which also relies on a non-holonomic planar motion
model. To the best of our knowledge, this result is the first to demonstrate a monocular
event camera solution that returns comparable results to regular camera alternatives.

5.4. Experiment on Real Data

To demonstrate the performance of our algorithm on real data, we collect further
sequences with a DAVIS346 event camera. The datasets are captured indoors to simulate
different illumination conditions and capture groundtruth via Opti-track. We first apply
them to two shorter sequences in which the camera follows an either circular (Circle) or
purely translational trajectory (Str). Next, we perform a test on a much longer sequence
with a more complex motion (Long2). While the first three sequences are recorded under
good illumination conditions, we conclude with another sequence with varying lighting
conditions by toggling external illumination while the dataset is recorded (HDR).

ORB-SLAM proves to be fragile when applied to our indoor sequences. The images
have low resolution and the proximity of the structure as well as fast vehicle rotations
furthermore induce large frame-to-frame disparities, ultimately causing ORB-SLAM to
break in such forward-exploration scenarios. We therefore assess the performance by a
quantitative comparison of relative pose errors between ETAM and 1pt. Results for all
sequences are summarized in Table 1. It shows the root-mean-square or median of all
deviations between estimated and groundtruth short-term relative rotation and translation
displacements. Note that— to minimize the impact of unobservable scale—the error of the
relative translation is evaluated by considering only the direction. Furthermore, errors are
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assessed per time, as it is clear that larger intervals may lead to more drift. We, therefore,
employ the unit deg /s for both rotational and translational errors. The best performance is
always highlighted in bold.

. —1PT 100
0 —ETAM 80
30 GT 60
— 300 —ORB ’E 40
— 250 Ll 20
(2]
"X 200 g 0
L 150 < 20
100 -40
50 -60
] -80
-300 -200 -100 o 100 200 300 -200 -150 -100 -50 o
x-axis [m] x-axis [m]

. 18 —ETAM
0 16 —gt
— 02 — 14
€ 04 g
05 @ 1.2
-§,gs X 1
® ?
> 1 > 08
-1.2
14 o6
16 0.4
0 0.5 1 15
x-axis [m]

(b)

Figure 6. Results for both our method and 1pt-RANSAC on long outdoor trajectories (top) and
indoor sequences (bottom). The indoor sequences are captured under normal (left) or challenging
illumination conditions (right). (a) synthetically generated outdoor sequences. (b) real data indoor
sequences.

It can be easily observed that ETAM outperforms 1pt on most datasets, and it is able
to continuously track entire sequences with high accuracy even as illumination conditions
become more challenging. In contrast, regular camera-based visual odometry with 1-point
RANSAC fails due to poor contrast or motion blur in dark or varying illumination settings
(cf. Figure 7). Due to the forward-facing arrangement, the purely translational displace-
ment, on the other hand, triggers much fewer events than trajectories with rotational
displacements, hence the slightly inferior performance for this type of motion. Figure 6b
visualizes top views of complete trajectories for both algorithms and groundtruth (denoted
gt). The left figure is from the sequence Long2, and the right one is from the sequence HDR.
Our event-based method can work robustly in all challenging conditions. We kindly refer
the reader to our supplemental video file for further qualitative results of our method.

Figure 7. Challenging illumination conditions. Regular frames suffer from poor contrast (left) when
lights are off or motion blur (right) when lights are on, which is caused by inappropriate exposure
time under varying illumination conditions. Events, in turn, preserve the visual information of the
structure.
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Table 1. Accuracy on different sequences. Unit: [deg/s].

Circular motion

method

Rmse(R) Median(R) Rmse(t) Median(t)
1pt 2.4526 2.3330 0.5427 0.0296
ETAM 1.3275 0.6443 0.2826 0.0322
method Purely translational motion

Rmse(R) Median(R) Rmse(t) Median(t)
1pt 0.6997 0.5300 0.5179 0.0369
ETAM 0.9769 0.6334 0.4637 0.0235
method Long trajectory

Rmse(R) Median(R) Rmse(t) Median(t)
1pt 1.8516 1.5829 0.1675 0.1718
ETAM 1.6901 1.3417 0.1631 0.1703
method Challenging illumination conditions

Rmse(R) Median(R) Rmse(t) Median(t)
1pt - - - -
ETAM 1.6042 0.9093 0.0686 0.0084

5.5. Computational Efficiency

All experiments are conducted on an Intel Core i7 2.4 GHz CPU. The total cumulative
processing time for each sequence is summarized in Table 2. It remains below the actual
length of each dataset, thus indicating real-time capability.

Table 2. Processing time in seconds (s) for the proposed method.

Circle Str Long1 Long?2 HDR
Dataset 140's 104 4335 4045 179
length
Processing 86 85s 35.6s 249 138's
time

5.6. Reconstruction Result

Figures 8 and 9 finally visualize reconstruction results of the indoor scene (cf. video
in Supplementary Material).Figure 8b,c show a side perspective and a birds-eye view
of the final result. The colored semi-dense points represent the reconstructed structure,
while the sparse white points in the center denote the discretized trajectory. As can be
clearly observed, our method produces a visually reasonable reconstruction similar to
what one would obtain using a sparse or semi-dense method on regular images. Further
visualisations of re-projected point clouds overlayed onto real images are visualized in
Figure 9a—f. The depth of points is indicated by the color, which reaches from red for closer
points to blue for far-away points. Note that we clean up isolated noisy points by applying
a radius filter. However, no additional depth fusion strategy is applied.
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(a) Indoor environment (b) Reconstructed map

(c) Topdown view

Figure 8. Reconstruction of an indoor scene. (a) shows a real image of the environment. (b,c) are
different perspectives onto the reconstructed structure.

(b)

(d)

Figure 9. (a—f) are back-projections of the marked structure parts shown in Figure 8 overlaid onto
the corresponding images captured under those poses. Warmer colors indicate closer points, while
colder colors indicate larger depth.
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6. Conclusions

Our main novelty consists of a single, joint objective that optimizes smooth motion
directly from events without the need for a prior derivation of 3D structure. This is achieved
by constructing a volumetric ray density field, in which we then maximize contrast as a
function of smooth motion parameters. As a result, the approach can bootstrap spatial
motion in arbitrarily structured environments. The formulation is tested on the important
application of ground vehicle motion estimation, and potential advantages under high
dynamic motion or challenging illumination conditions are verified. While this is a highly
promising result, our next step consists of extending the operation to more dynamic, full
3D motion, which we believe is possible if using the additional input of an IMU.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/s22155687/s1, Video S1: Supplementary video.
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