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On Scale Initialization in Non-Overlapping
Multi-Perspective Visual Odometry

Yifu Wang1 and Laurent Kneip2

1 Australian National University u5434194@anu.edu.au
2 Australian National University laurent.kneip@anu.edu.au

Abstract. Multi-perspective camera systems pointing into all directions
represent an increasingly interesting solution for visual localization and
mapping. They combine the benefits of omni-directional measurements
with a sufficient baseline for producing measurements in metric scale.
However, the observability of metric scale suffers from degenerate cases
if the cameras do not share any overlap in their field of view. This
problem is of particular importance in many relevant practical appli-
cations, and it impacts most heavily on the difficulty of bootstrapping
the structure-from-motion process. The present paper introduces a com-
plete real-time pipeline for visual odometry with non-overlapping, multi-
perspective camera systems, and in particular presents a solution to the
scale initialization problem. We evaluate our method on both simulated
and real data, thus proving robust initialization capacity as well as best-
in-class performance regarding the overall motion estimation accuracy.

1 Introduction

Over the past decade, automated real-time visual localization and mapping has
often been proclaimed as a mature computer vision technology. However, it is
only with the emerge of novel, billion-dollar industries such as autonomous driv-
ing, robotics, and mixed reality consumer products that this technology gets
now put to a serious test. While single camera solutions [22, 28, 10, 19, 20, 4] are
certainly the most interesting from a more scientific point of view, they are also
challenged by many potential bottlenecks such as a limited field of view, mod-
erate sampling rates, and a low ability to deal with texture-poor environments
or agile motion. In addition to fast sensors such as inertial measurement units,
the engineering standpoint therefore envisages the use of stereo [17], depth [21,
30, 25, 29], or even light-field cameras that simplify or robustify the solution of
the structure-from-motion problem by providing direct 3D depth-of-scene mea-
surements.

The present paper is focusing on yet another type of sensor system that
aims at combining benefits from different directions, namely Multi-Perspective
Cameras (MPCs). If pointing the cameras into different, opposite directions, the
flow fields caused by translational and rotational motion become very distinc-
tive [15], meaning that MPC solutions are strong at avoiding motion degenera-
cies. Furthermore, omni-directional observation of the environment makes fail-
ures due to texture-poor situations much more unlikely. In contrast to regular
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omni-directional cameras, MPCs maintain the advantage of not introducing any
significant lens distortions in the perceived visual information. Just like plain
monocular cameras, MPCs also remain kinetic depth sensors. This means that
they have no inherent limitations like stereo or depth cameras, which have lim-
ited range, or—in the latter case—cannot be used outdoors. As a final benefit,
MPC systems are able to produce measurements in metric scale even if there is
no internal overlap in the cameras’ field of view.

Fig. 1. Example fields of view
of a multi-perspective camera
mounted on a modern car.

MPCs are becoming increasingly important
from an economic point of view. Looking at the
most recent designs from the automotive or the
consumer electronics industry, it is not uncom-
mon to find a large number of affordable visual
onboard sensors looking into various directions to
provide complete capturing of the surrounding en-
vironment. An example of the fields of view of
a modern car’s visual sensors is shown in Figure
1. The drawback with many such arrangements,
however, is that the sensors do not share any sig-
nificant overlap in their field of view. We call those
camera arrays non-overlapping MPCs.

The proper handling of non-overlapping MPCs requires the solution of two
fundamental problems:

– As discussed in [3], non-overlapping MPCs are easily affected by motion de-
generacies that cause scale unobservabilities, such as straight or Ackermann
motion. This is a severe problem especially in automotive applications or in
general during the bootstrapping phase, where no scale information can be
propagated from prior processing.

– In order to truly benefit from the omni-directional measurements of MPCs,
the measurements need to be processed jointly in each step of the computa-
tion. This is challenging as classical formulations of space resectioning and
bundle adjustment all rely on a simple perspective camera model.

The present paper notably provides solutions to these two problems. The
paper is organized as follows. Section 2 introduces further related work. Sec-
tion 3 then provides an overview of our complete non-overlapping MPC motion
estimation pipeline as well as the joint bootstrapping and global optimization
modules. Section 4 finally presents the promising results we have obtained on
both simulated and real data.

2 Motivation and further background

The motion estimation problem with MPCs can be approached in two funda-
mentally different ways. The first one consists of a loosely-coupled scheme where
the information in each camera is used to solve individual monocular structure-
from-motion problems, and the results from every camera are then fused in a
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subsequent pose averaging module. Kazik et al. [9] apply this solution strategy
to a stereo camera rig with two cameras pointing into opposite directions. The
inherent difficulty of this approach results from the scale invariance of the in-
dividual monocular structure-from-motion results. Individual visual scales first
have to be resolved through an application of the hand-eye calibration constraint
[8] before the individual pose results can be fused. Furthermore, the fact that
the measurements of each camera are processed independently means that the
benefit of having omni-directional measurements remains effectively unexploited
during the geometric computations.

The second solution strategy assumes that the frames captured by each cam-
era are synchronized, and hence can be bundled in a multi-frame measurement
that contains one image of each camera from the same instant in time. Relying
on the idea of Using many cameras as one [24], the fundamental problems of
structure from motion can now be solved jointly for the entire MPC system,
rather than for each camera individually. The measurements captured by the
entire MPC can notably be described using a generalized camera, a model that
envisages the description of measured image points via spatial rays that inter-
sect with the corresponding camera’s center, all expressed in a common frame
for the entire MPC. By relying on the generalized camera model, the problems
of joint absolute and relative camera pose estimation for the entire MPC rig
have been successfully solved [23, 12, 14, 24, 27, 18, 13]. An excellent summary of
the state-of-the-art in generalized camera pose computation is provided by the
OpenGV library[11], a relatively complete collection of algorithms for solving
related problems.

Despite the fact that closed-form solutions for the underlying algebraic ge-
ometry problems of generalized absolute and relative camera pose computation
have already been presented, a full end-to-end pipeline for visual odometry with
a non-overlapping MPC system that relies exclusively on the generalized camera
paradigm remains an open problem. The problem mostly lies in the bootstrap-
ping phase. As explained in [3], the relative pose for a multi-camera system
can only be computed if the motion does not suffer from the degenerate case
of Ackermann-like motion (which includes the case of purely straight motion).
Unfortunately, in a visual odometry scenario, the images often originate from
a smooth trajectory with only moderate dynamics, hence causing the motion
between two sufficiently close frames to be almost always very close to the de-
generate case. Kneip and Li [13] claim that the rotation can still be found, but we
confirmed through our experiments that even the quality of the relative rotation
is not sufficiently good to reliably bootstrap MPC visual odometry. A robust
initialization procedure, as well as a complete, real-time end-to-end pipeline,
notably, are the main contributions of this work.
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3 Joint motion estimation with non-overlapping
multi-perspective cameras

This section outlines our complete MPC motion estimation pipeline. We start
with an overview of the entire framework, explaining the state machine and
resulting sequence of operations especially during the initialization procedure.
We then look at two important sub-problems of the initialization, namely the
robust retrieval of absolute orientations for the first frames of a sequence, as
well as a joint linear recovery of the corresponding relative translations and 3D
points. We conclude with an insight into the final bundle adjustment back-end
that is entered once the initialization is completed.

3.1 Notations and prior assumptions

Fig. 2. Notations used throughout this pa-
per (best viewed in color). Please see text
for detailed explanations.

The MPC frames of a video se-
quence are denoted by VPj , where
j = {1, · · · ,m}. Their poses are ex-
pressed by transformation matrices

Tj =

[
Rj tj
0 1

]
such that Tjx trans-

forms x from the MPC to the world
frame (denoted W). Let us now as-
sume that our MPC has k cameras.
This leads to the definition of trans-

formation matrices Tc =

[
Rc tc
0 1

]
,

where c ∈ {1, · · · , k}. They permit
the transformation of points from the
respective camera frame c to the MPC
frame. Assuming that the MPC rig is
static, these transformations are constant and determined through a prior ex-
trinsic calibration process. We also define the relative transformation T1j =[
R1j t1j
0 1

]
that allows us to transform points from VPj back to VP1. We fur-

thermore assume that—given that we are in a visual odometry scenario and
that the cameras have no overlap in their fields of view—the cameras do not
share any point observations. We therefore can associate each one of our points
pi, i ∈ {1, · · · , n} to one specific camera within the rig, denoted by the index ci.
To conclude, we also assume that the intrinsic camera parameters are known,
which is why we can always transform 2D points into spatial unit vectors point-
ing from the individual camera centers to the respective world points. We denote
these measurements bji , meaning the measurement of point pi (with camera ci)
in the MPC frame VPj . Our derivations furthermore utilize the transformation
Tc

1j , which permits the direct transformation of points from the camera frame c
in VPj to the camera frame c in VP1. All variables are indicated in Figure 2.
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3.2 Framework overview

A flowchart of our proposed method detailing all steps including the initializa-
tion procedure is illustrated in Figure 3. After the definition of a first (multi-
perspective) keyframe3, the algorithm keeps matching inter-camera correspon-
dences between the first and subsequent MPC frames until the average of the
median frame-to-frame disparity for each camera surpasses a predefined thresh-
old (verified in the decision nodes “Is Keyframe?”). Once this happens, we add
a second keyframe and compute all Tc

12 using classical single camera calibrated
relative pose computation [26]. We furthermore triangulate an individual point
cloud for every camera in the MPC array. Subsequent frames from the individual
cameras are then aligned with respect to these maps using classical single camera
calibrated absolute pose computation [16]. Once enough frames are collected, the
initialization is completed by the joint, linear MPC pose initialization module
outlined in Sections 3.3 and 3.4. Note that individual single camera tracking
is only performed in order to eliminate outlier measurements and obtain prior
knowledge about relative rotations. It bypasses the weakness of methods such as
[13] of not being able to deliver robust generalized relative pose results in most
practically relevant cases. The actual final initialization step and all subsequent
modules then perform joint MPC measurement processing.

After the initialization is completed, the frames of each new MPC pose are
matched individually to the frames of the most recent MPC keyframe, but the
alignment is solved jointly using generalized camera absolute pose computation
[12]. We keep checking the local distinctiveness of every MPC frame by evaluat-
ing the frame-to-frame disparities in the above outlined manner, and add new
keyframes everytime the threshold is surpassed. To conclude, we add new 3D
points everytime a new keyframe is added, and perform generalized windowed
bundle adjustment to jointly optimize over several recent MPC poses and the 3D
landmark positions. This back-end optimization procedure is outlined in Section
3.5.

3 Keyframes are simply frames that are retained in a buffer of frames due to sufficient
local distinctiveness [10].

Initialized?

1st Frame 2nd Frame

Set Keyframe

Cam R
Cam RCam R

Matching

Cam RCam RCam RFeature

Extraction

Cam RCam RCam RFrames from

MPC

Cam RCam R
Cam R
Matching

Cam R
Cam RCam R

Tracking

Enough

Frames?

Is

Keyframe?

Cam RCam RCam RSingle Cam

Relative Pose

Cam R
Cam RCam R
Dump Frame

Joint Linear

Bootstrapping

Cam R
Cam RCam R

Matching

MPC

Resectioning
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Keyframe?

Cam RCam RCam RAdd new

Points

MPC

Bundle Adjustment

Yes

No

Yes

No

No

Yes

Yes

No

Yes

No

Yes

No

Fig. 3. Overview of the proposed visual localization and mapping pipeline for MPC
systems. The flowchart in particular outlines the detailed idea behind the initialization
procedure.
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3.3 Initial estimation of relative rotations

The very first part of our computation executes visual odometry in each camera
individually. In order to make use of the relative orientations, we propose to first
eliminate the redundancy in the information. This is done by first combining the
computed orientations with the camera-to-MPC transformations Tc in order to
obtain relative orientation estimates for the entire MPC rig. We now have k
samples for the MPC frame-to-frame orientations in the frame buffer. We apply
L1 rotation averaging based on the Weiszfeld algorithm as outlined in [6] in order
to obtain an accurate, unique representation.

3.4 Joint linear bootstrapping

The computation steps until here provide sets of inlier inter-camera correspon-
dences and reasonable relative rotations between subsequent MPC frames. The
missing variables towards a successful bootstrapping of the computation are
given by MPC positions and point depths. Translations and point depths can
also be taken from the prior individual visual odometry computations [9], but
they may be unreliable, and—more importantly—have different unknown visual
scale factors that would first have to be resolved.

We propose a new solution to this problem which solves for all scaled variables
(i.e. positions and point depths) through one joint, closed-form, linear initializa-
tion procedure. What we are exploiting here is the known fact that structure
from motion can be formulated as a linear problem once the relative rotations
are subtracted from the computation (although results will not minimize a geo-
metrically meaningful error anymore).

Let us assume that we have two MPC view-points VP1 and VPj . We start by
formulating the hand-eye calibration constraint for a camera c inside the MPC{

tc = t1j + R1j · tc + R1j ·Rc · tcj1
Rc = R1j ·Rc ·Rc

j1

(1)

Let us now assume that there is one observed world point pi giving rise to the
measurements b1

i and bji inside the camera. The latter now has the index ci.
The point inside the first camera is simply given as λi ·b1

i , where λi denotes the
depth of pi seen from camera ci in VP1. We now apply Tci

j1 and transform this
point into camera ci of VPj . In here, the point obviously needs to align with the

direction bji , which leads us to the constraint

(Rci
j1 · λi · b

1
i + tcij1)× bji = 0. (2)

By replacing (1) in (2), we finally arrive at

(RT
ci ·R

T
1j ·Rci ·λi ·b1

i )×b
j
i−(RT

ci ·R
T
1j ·t1j)×b

j
i = −RT

ci ·R
T
1j(tci−R1j ·tci)×b

j
i .

(3)
Let us now assume that we have n points and m MPC frames. The unknowns

are hence given by λi, where i ∈ {1, · · · , n}, and t1j , where j ∈ {2, · · · ,m}. We
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only use fully observed points, meaning that each point pi is observed by camera
ci in each MPC frame, thus generating the measurement sequence

{
b1
i , · · · ,bmi

}
.

All pair-wise constraints in the form of (3) can now be grouped in one large linear
problem Ax = b, where

A =



(RT
c1R

T
12Rc1b

1
1) × b2

1 [b2
1]×R

T
c1R

T
12

... ...
(RT

cnR
T
12Rcnb

1
n) × b2

n [b2
n]×R

T
cnR

T
12

... ... ... ...

(RT
c1R

T
1mRc1b

1
1) × bm

1 [bm
1 ]×R

T
c1R

T
1m

... ...
(RT

cnR
T
1mRcnb

1
n) × bm

n [bm
n ]×R

T
cnR

T
1m


(4)

x =


λ1

...
λn

t12
...
t1m

 b =



−RT
c1R

T
12(tc1 −R12tc1) × b2

1

...
−RT

cnR
T
12(tcn −R12tcn) × b2

n

...
−RT

c1R
T
1m(tc1 −R1mtc1) × bm

1

...
−RT

cnR
T
1m(tcn −R1mtcn) × bm

n


(5)

A and b can be computed from the known extrinsics, inlier measurements, and
relative rotations, whereas x contains all unknowns.

The non-homogeneous linear problem Ax = b could be solved by a standard
technique such as QR decomposition, thus resulting in x = (ATA)−1ATb. How-
ever, in order to improve the efficiency, we utilize the Schur-complement trick
and exploit the sparsity pattern of the matrix. Matrix ATA is divided into four

smaller sub-blocks ATA =

[
P Q
R S

]
, and our two vectors x and b are decomposed

accordingly thus resulting in x = [xT1 ,x
T
2 ]T and ATb = [

(
ATb1

)T
,
(
ATb2

)T
]T .

Substituted into the original equation ATAx = ATb, and after variable elimi-
nation, we obtain {

Px1 = ATb1 −Qx2

(S−RP−1Q)x2 = ATb2 −RP−1ATb1

(6)

This form permits us to first solve for x2 individually, a much smaller problem
due to the relatively small number of MPC frames. x1 is subsequently retrieved
by simple variable back-substitution.

3.5 Multi-perspective windowed bundle adjustment

After bootstrapping, we can continuously use multi-perspective absolute camera
pose computation [23] in order to align subsequent MPC frames with respect
to the local point cloud. Furthermore, we keep buffering keyframes each time
the average frame-to-frame disparity exceeds a given threshold. This in fact
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already constitutes a complete procedure for MPC visual odometry. In order to
improve the accuracy of the solution, we add a windowed bundle adjustment
back-end to our pipeline [7]. The goal of windowed bundle adjustment(BA) is to
optimize 3D point positions and estimated MPC poses over all correspondences
observed in a certain number of most recent keyframes. The key idea here is that
points are generally observed in more than just two keyframes. By minimizing
the reprojection error of every point into every observation frame, we implicitly
take multi-view constraints into account, thus improving the final accuracy of
both structure and camera poses. The computation is restricted to a bounded
window of keyframes not to compromise computational efficiency. This form of
non-linear optimization is also known as sliding window bundle adjustment.

Let us define the set Ji = {j1, · · · , jk} as the set of MPC keyframe indices
for which camera ci observes the point pi. Let us furthermore assume that the
size of the optimization window is s, and the set of points is already limited to
points that have at least two observations within the s most recent keyframes.
The objective of windowed bundle adjustment can now be formulated as{

T̂m−s+1, · · · , T̂m, p̂1, · · · , p̂n
}

=

argmin
Tm−s+1,··· ,Tm,p1,··· ,pn

n∑
i=1

∑
j∈Ji

‖πci(b̃
j
i )− πci(T

−1
ci T−1j p̃i)‖2. (7)

where

– Tj is parametrized minimally as a function of 6 variables.
– j ∈ {m− s+ 1, · · · ,m}.
– πci is the known (precalibrated) camera-to-world function of camera ci. It

transforms 3D points in homogeneous form into 2D Euclidean points.
– x̃ = takes the homogeneous form of x by appending a 1.
– πci(b̃

j
i ) is the original, measured image location of the spatial direction bji .

4 Experimental results

We test our algorithm on both simulated and real data. The simulation exper-
iments analyze the noise resilience of our linear bootstrapping algorithm. The
real data experiment then evaluates the performance of the complete pipeline
by comparing the obtained results against ground truth data collected with an
external motion tracking system, as well as a loosely-coupled alternative.

4.1 Results on simulated data

We perform experiments on synthetic data to analyze the performance of our
linear MPC pose initialization module in the presence of varying levels of noise.
In all our simulation experiments, we simply use 2 cameras pointing into op-
posite directions, and generate 10 random points in front of each camera. We
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Fig. 4. Benchmark of our linear bootstrapping algorithm showing relative translation
and 3D point depths error for different levels of noise in the relative rotation and
2D landmark observations. The experiment is repeated for different “out-of-plane”
dynamics, which causes significant differences in the scale observability of the problem.
Note that each value in the figures is averaged over 1000 random experiments.

furthermore generate 10 homogeneously distributed camera poses generating
near fronto-parallel motion for both cameras. To conclude, we add an oscillat-
ing rotation about the main direction of motion. The maximum amplitude of
this rotation is set to either 5◦, 7.5◦, 10◦, 15◦ or 20◦, which creates an increasing
distance to the degenerate case of Ackerman motion. We perform two separate
experiments in which we add noise to either the relative rotations or the 2D bear-
ing vector measurements pointing from the camera centers to the landmarks. The
error for each noise level is averaged over 1000 random experiments.

In our first experiment, we add noise to the relative rotations by multiply-
ing them with another random rotation matrix that is derived from uniformly
sampled Euler angles with a maximum value reaching from zero to 2.5◦ degrees.

The reported errors are the relative depth error of the 3D points ‖λest‖
‖λtrue‖ , and the

relative translation magnitude error ‖test‖‖ttrue‖ . The errors are indicated in Figures

4(a) and 4(b), respectively.

In our second experiment, we simulate noise on the bearing vectors by adding
a random angular deviation θrand such that tan θrand <

σ
f , where f is a virtual

focal length of 500 pixels, and σ is a virtual maximum pixel noise level reaching
from 0 to 5 pixels. We analyze the same errors and the results are reported in
Figures 4(c) and 4(d), respectively.

As can be concluded from the results, a reasonable amount of noise in both
the point observations as well as the relative rotations can be tolerated. However,
the correct functionality of the linear solver depends critically on the observabil-
ity of the metric scale. Limiting the maximum amplitude of the out-of-plane
rotation to a low angle (e.g. below 5◦) can quickly compromise the stability of
the solver and cause very large errors. In practice, this means that accurate re-
sults can only be expected if we add sufficiently many frames with sufficiently
rich dynamics to our solver.
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4.2 Results on real data

We have been given access to the data already used in [9], which allows us to com-
pare our method against accurate ground truth measurements obtained by an
external tracking device, a loosely-coupled alternative [9], and a more traditional
approach from the literature [3]. The data consists of two different sequences cap-
tured with a synchronized, non-overlapping stereo rig that contains two cameras
facing opposite directions. For further details about the hardware including in-
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Fig. 5. Bottom row: Results obtained on the circular and straight motion sequences
from [9]. Top row: Results obtained for different algorithm configurations that do not
fully exploit the modules presented in this paper.
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trinsic parameter values as well as the extrinsic calibration procedure, the reader
is kindly referred to [9]. The sequences are henceforth referred to as the circular
and straight motion sequences. In the circular motion sequence, the rig moves
with significant out-of-plane rotation along a large loop. In the straight motion
sequence, the rig simply moves forward with significantly reduced out-of-plane
rotation. Both circular and straight datasets run at 10FPS. All experiments are
conducted on a regular desktop computer with 8GB RAM and an Intel Core i7
2.8 GHz CPU. Our C++ implementation runs in real-time, and uses OpenCV
[2], Eigen [5], OpenGV [11] and the Ceres Solver library [1]. op In order to assess
the impact of our proposed linear bootstrapping and generalized sliding window
bundle adjustment modules, we analyze three different algorithm configurations
on the circular motion sequence. In our first test—indicated in Figure 5(a)—we
do not use our proposed initialization procedure, but simply rely on the method
presented in [13] to bootstrap the algorithm from a pair of sufficiently separated
frames in the beginning of the sequence. We tested numerous entry points, but
the algorithm consistently fails to produce a good initial relative translation,
thus resulting in severely distorted trajectories. In our second test—indicated
in Figure 5(b)—we rely on our linear bootstrapping algorithm to initialize the
structure-from-motion process, but still do not activate windowed bundle adjust-
ment. The obtained results are already much better, but still relatively far away
from ground truth. It seems that our linear solver is able to produce meaningful
initial values, but—due to the ill-posed nature of the problem—still has some
error and further error is accumulated throughout the sequence. In our final
test—indicated in Figure 5(c)—we then also activate the sliding window bundle
adjustment, thus leading to high-quality results with very little drift away from
ground truth. Once a sufficiently close initialization point is given, the non-linear
optimization module is consistently able to compensate remaining scale and ori-
entation errors. Finally, Figure 5(d) shows that the algorithm is also able to
successfully process the more challenging straight motion sequence.
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Fig. 6. Ratios of Norms of Estimated
Translations to Ground Truth and Rela-
tive Translation Vector Errors

Method Ratio of Norms

Approach by [3] 1.005 ± 0.071
Approach by [9] 0.90 ± 0.28

Our Method 0.996 ± 0.038

Method Vector Error

Approach by [3] 0.079 ± 0.061
Approach by [9] 0.23 ± 0.19

Our Method 0.092 ± 0.049

Table 1. Performance comparison
against [9] and [3]
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Similar to [9] we also calculated the ratio of the norms of the estimated and
the ground truth translations as well as the relative translation vector error.
The results are indicated in Figure 6. Table 1 furthermore compares our result
against the results obtained in [9] and [3]. It can be observed that our method
operates closest to the ideal ratio of 1 with smallest standard deviation with
respect to the ratio of norms of the estimated and ground truth translations.
Looking at the relative translation vector error ratio, our result is very close
to the one obtained in [9], and again achieves smaller standard deviation. The
better standard deviation makes us believe that part of the reason for the slightly
worse mean may be biases originating from an imperfect alignment with ground
truth.

As a final test, we consider it important to verify the performance of our
linear bootstrapping algorithm on real data. Rather than applying it just in the
very beginning of the dataset, we therefore test if the initialization method can
work for arbitrary starting positions across the entire circular motion sequence.
The test result of the ratio of norms of estimated and ground truth translations
is indicated in Figure 7. The mean value of the ratio equals to 0.956 and the
standard deviation is 0.075. We can conclude that, at least on this sequence, the
linear initialization module performs consistently well.
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Fig. 7. Accuracy of the linear bootstrapping technique for various starting points across
the entire circular motion sequence.

5 Discussion

This paper introduces a complete pipeline for motion estimation with non-
overlapping multi-perspective camera systems. The main novelty lies in the fact
that nearly all processing stages including bootstrapping, pose tracking, and
mapping use the measurements from all cameras simultaneously. The approach
is compared against a loosely coupled alternative, thus proving that the joint
exploitation of the omni-directional measurements leads to superior motion es-
timation accuracy.

While our result represents an unprecedented integration of the paradigm
of Using many cameras as one into a full end-to-end real-time visual odometry
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pipeline, there still remains space for further improvements. For example, one
remaining problem is that the success of our approach still depends on sufficiently
good relative rotations estimated from each camera individually at the very
beginning. Future research therefore consists of pushing generalized relative pose
methods towards a robust recovery of relative rotations even in the case of motion
degeneracies. A further point consists of parameterizing poses with similarity
transformations, which would simplify drift compensation in the case of extended
periods of scale unobservability.

References

1. Agarwal, S., Mierle, K., Others: Ceres solver. http://ceres-solver.org
2. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)
3. Clipp, B., Kim, J.H., Frahm, J.M., Pollefeys, M., Hartley, R.: Robust 6DOF Motion

Estimation for Non-Overlapping, Multi-Camera Systems. In: Proceedings of the
IEEE Workshop on Applications of Computer Vision. pp. 1–8. Washington, DC,
USA (2008)
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